Перейти до основного контенту

Як побудувати висоту, бісектрису та медіану в прямокутному трикутнику: докладна інструкція

5 хв читання
1929 переглядів
Прямокутний трикутник є одним з найвідоміших і важливих типів трикутників в геометрії. Він має один кут величиною 90 градусів, а два інших кути є гострими. Через свою специфічну форму, прямокутні трикутники дуже корисні в багатьох сферах, включаючи будівництво, інженерію та астрономію.При побудові трикутника однією з основних задач є визначення його висоти, бісектриси та медіани. Висота - це відрізок, опущений з вершини трикутника на протилежну сторону і перпендикулярний їй. Бісектриса - це відрізок, що ділить кут на дві рівні частини. Медина - це відрізок, що з'єднує вершину трикутника з серединою протилежної сторони.У цій статті ми надамо детальну інструкцію, як побудувати висоту, бісектрису та медіану в прямокутному трикутнику за допомогою компаса та лінійки. Ми розглянемо кожен з цих елементів окремо і пояснимо.кроки, необхідні для їх побудови. Слідуючи нашій інструкції, ви зможете легко побудувати ці елементи та знайти їх величини для будь-якого заданого прямокутного трикутника.Кроки: побудова висоти, бісектрисі та медіани в прямокутному трикутникуКрок 1: Побудова висотиВисота - це відрізок, проведений з вершини прямого кута трикутника до протилежної сторони. Щоб побудувати висоту, потрібно:Знайти прямий кут трикутника.Провести пряму лінію з вершини прямого кута, перпендикулярну протилежній стороні.Перетнути цю пряму лінію з протилежною стороною.Крок 2: Побудова бісектрисиБісектрисa - це пряма лінія, яка ділить кут на дві рівні частини. Щоб побудувати бісектрису, потрібно:Знайти вершину кута, який потрібно поділити.Провести дві лінії з цієї вершини, які рівновіддалені.від сторін кута.Перекреслити ці дві лінії.Провести пряму лінію, що з'єднує вершину кута з точкою перетину.Крок 3: Побудова медіаниМедіана - це відрізок, що з'єднує будь-яку вершину трикутника із серединою протилежної сторони. Щоб побудувати медіану, можна скористатися наступними кроками:Знайти одну з вершин трикутника.Знайти середину протилежної сторони за допомогою центру відрізка.Провести пряму лінію, що з'єднує вершину трикутника з серединою протилежної сторони.Тепер у вас є інструкції щодо побудови висоти, бісектриси та медіани в прямокутному трикутнику. Не забувайте, що ці побудови можуть бути корисними при розв'язанні різних геометричних задач.Визначення основних понятьПеред тим, як перейти до побудови висоти, бісектриси та медіани в прямокутному трикутнику,необхідно розібратися в основних поняттях.ТермінОписПрямокутний трикутникТрикутник, у якого один з кутів дорівнює 90 градусів.Висота трикутникаВідрізок, проведений з вершини трикутника до підстави і перпендикулярний до підстави.Бісектриса трикутникаВідрізок, що ділить кут на дві рівні частини.Медіана трикутникаВідрізок, що з'єднує вершину трикутника з серединою протилежної сторони.Ці поняття відіграють важливу роль у геометрії і допомагають нам розібратися у внутрішній структурі та властивостях трикутника.Крок перший: побудова висотиВисота трикутникапредставляє собою перпендикуляр, проведений з вершини трикутника до підстави.Для побудови висоти в прямокутному трикутнику потрібно вибрати вершину, неявляється прямим кутом, і провести від нього лінію, перпендикулярну стороні прямого кута.Коли лінія проходить через іншу сторону трикутника, вона називаєтьсявисотою.Висота ділить трикутник на два прямугольні трикутники, а основа трикутника є відрізком, на якому лежить висота.Таким чином, першим кроком у побудові висоти є вибір вершини, проведення перпендикулярної лінії і знаходження основи трикутника, яка буде знаходитись на цій лінії.Крок другий: побудова бісектрисБісектрису - це лінія, яка ділить кут на дві рівні частини і перетинає протилежну сторону трикутника. Це важлива лінія, яка може використовуватись для вирішення різних геометричних задач.Щоб побудувати бісектрису, виконаємо наступні дії:Візьмемо циркуль і поставимо його шарнір у вершині кута, який ми хочемо розділити.
  • Без зміни відстані між ніжками циркуля, проведемо два дуги на обох сторонах кута.
  • Проведемо пряму лінію, що з'єднує точку перетину дуг з протилежною стороною трикутника та вершиною.
  • Отримана лінія і буде являти собою бісектрису кута. Переконайтеся, що лінія перетинає протилежну сторону в точці, яка ділить її на дві рівні частини.

    Щоб перевірити правильність побудови, можна виміряти кути між бісектрисою та протилежними сторонами. Кути повинні бути рівними.

    На малюнку вище показано побудову бісектрису трикутника ABC. Лінія BD є бісектрисою кута ABC.

    Вітаю! Ви успішно побудували бісектрису в прямокутному трикутнику. Тепер можна переходити до наступного кроку - побудови медіани.

    Крок третій: побудова медіани

    Щоб побудувати медіану в прямокутному трикутнику, слідуйте цим кроки:Виберіть будь-яку сторону трикутника.Знайдіть середину цієї сторони шляхом ділення її навпіл.З'єднайте знайдену середину з другим кутом трикутника.Отриманий відрізок є медіаною трикутника.При побудові медіани в прямокутному трикутнику особливо важливо враховувати, щоб точка перетворення медіан знаходилася всередині трикутника. Це означає, що медіана буде перетинати інші сторони трикутника в точках, відмінних від їх середини.Побудова медіани дозволяє наглядно уявити центр мас трикутника і вивчити його властивості. Також медіана є основою для побудови інших важливих відрізків, таких як висоти та бісектриси.Перевірка правильності побудовПісля того як ви побудували висоту, бісектрису і медіану в прямокутному трикутнику, важливо впевнитись у правильності виконаних дій. Для цього можна провести кілька перевірок.По-перше, можна перевірити, що висота дійсно проходить через вершину прямого кута і перпендикулярна гіпотенузі. Для цього можна використовувати кутомірний трикутник і побачити, що кут між висотою і гіпотенузою дорівнює 90 градусів.По-друге, можна перевірити, що бісектрису дійсно ділить кут прямокутного трикутника на два рівні кути. Для цього можна використовувати транспортер і виміряти кути з обох сторін від бісектриси. Вони повинні бути однаковими.По-третє, можна перевірити, що медіана дійсно проходить через середину гіпотенузи і через вершину прямого кута. Для цього можна використовувати лінійку і побачити, що медіана розділяє гіпотенузу на дві рівні частини.Якщо всі перевірки були пройдені успішно, значить ваші побудови правильні, і ви можете бути впевнені в їхній правильності.ПобудоваОписПеревіркаВисотаПерпендикуляр до гіпотенузи, що проходить через вершину прямого кута.Кут між висотою і гіпотенузою дорівнює 90 градусів.БісектрисаЛінія, що ділить кут прямокутного трикутника на два рівні кути.Кути з обох сторін від бісектриси рівні.МедіанаЛінія, що з'єднує середину гіпотенузи з вершиною прямого кута.Медіана ділить гіпотенузу на дві рівні частини.